Precedence from highest to lowest: Not (‘) And (-) Or (+)
minterm - product term - SOP - find 1
maxterm - sum term - POS - find 0

Each minterm is the complement of the maxterm
SOP - 2-level AND-OR/NAND circuit

POS - 2-level OR-AND/NOR circuit

to not having enough minterms.
Half Adder:

CcC=XYS=X"Y +XY

K-Maps -> SOP

Gate-Level (SSI) Design: Full-Adder, Code Converter

=X®Y

C=XY + (XDY)Z S = XD(YDZ)

Block-Level Design: block: 4-bit parallel/ripple-carry
adder: C; 4 = X; 'Y; + (X; @Y))-C;, S; =X; @Y; ® C;

X
Y

\r\a@n

o

) >

Z

X+X-Y=X

X-Y+X-Z+Y-Z=X-Y+X-Z Y'-Z+Y-Z’=Y&Z

X+X-Y=X+Y Y'-Z'+Y-Z=(Yo2Z)

Given a logic gate with delay t. If inputs are stable at
tn, then the earliest time in which the

da) +1

times t4, 1o, ...,
output will be stable is: max(t4,to,...

Y, X,

0

Y; X,

Lo

Y, X,

0

FA

FA

FA

_
L

e L]

(U TRV TEY

|

S

| = |

SZ sl
at 2t

Eddte L

S-R Latch: Q(t+1)=S+R’-Q, S*R=0

combinational circuit: each output depends entirely on
the immediate (present) inputs

sequential circuit: each output depends on both present

inputs and state

= Synchronous: outputs change only at specific time
= Asynchronous: outputs change at any time

PLAs may not be able to implement a given mapping due Multivibrator: a class of sequential circuits

§ Bistable (2 stable states)
= Latches and flip-flops.
= differ in the methods used for changing state.

§ Monostable or one-shot (1 stable state)

§ Astable (no stable state)

Memory element: a device which can remember value

1 KB= 2" bytes; § Latches

1 MB = 2%° bytes;
1 GB = 2% bytes;
1 TB= 2% bytes.

§ Flip-flops

Active-High

0100 R 0 1100
0001 S Q' 0011
S R Q(t+1)

0 0 Q(t) No change
0o 1 0 Reset

1 0 1 Set

1 1 indeterminate

Actlve Low

B

Gated D Latch: Q(t+1)=

EN D Q(t+1)
1 0 0 Reset
1 1 1 Set
0 X Q1) No change

input/output = x/y

X+Y=(X®Y)+X-Y

1/0

o T flip-flop: Single input version of the

5’JK flip-flop Q(t+1)=T-Q’+T’-Q
T CLK Q(t+1) Comments
o 1 Q(t) No change
1 0 Q()' Toggle

Flip-Flops: synchronous bistable

« Output changes state at a specified
point on a triggering input called the
clock.

- Change state either at the positive
(rising) edge, or at the negative
(falling) edge of the clock signal.

Note “>” symbol at the clock input.

> positive, 0> negative edge-triggered

Positive pulses

NN

Positive Negative edges
edges
S —o
CLK C
I—[}o— R P~ o

A positive edge-triggered D
flip-flop formed with an S-R
flip-flop.

§ON=1,0FF =0

= Edge-triggered

indefinitely, or change value on command from its inputs.

Two types of triggering/activation
= Level/Pulse-triggered

§ Positive edge-triggered (ON = 0 to 1; OFF = other time)
§ Negative edge-triggered (ON = 1 to 0: OFF = other time)

Present Next State Output
State x=0 x=1 x=0 x=1

1/0 AB A'B* A'B* y y

00 00 01 0 0

01 00 11 1 0

10 00 10 1 0

11 00 10 1 0

S-R flip-flop: On the triggering edge
of the clock pulse
positive edge-triggered S-R flip-flop

S R CLK Q(t+1) Comments
0 0 X Q(t) No change
o 1 1 0 Reset

1 0) 1 Set

1 1 T ? Invalid

X = irrelevant (“don’t care”)
T = clock transition LOW to HIGH

D flip-flop: On the triggering edge of
the clock pulse

D CLK Q(t+1) Comments
1 T 1 Set
0 0 0 Reset

T = clock transition LOW to HIGH

|J-K flip-flop: Q and Q' are fed back to
the pulse-steering NAND gates.

J
Pulse —Q
CLK transition
detector
K <
J K CLK Q(t+1) Comments
o o 1?1 Q(t) No change
0o 1 0 0 Reset
1 0 0 1 Set
1 1 1 Q()' Toggle

— decoder

entit entit code

Yy y

—_—
—| encoder—
—
B ——

T

decoder: Convert binary information from n input lines to code
(@ maximum of) 2 output lines.

+ Known as n-to-m-line decoder, or simply n:m orn xm
decoder (M < 2n). _ data data { " outpu
« May be used to generate 2" minterms of n input input ¢ ; t

—] —

variables. . select select
SOP = decoder to generate minterms + OR gate to form the] o
sum encoder: exactly one input line is high and the rest are low,
enable control signal: the device is only activated when Do =Fi+F;, Dy =Fy+F, fF R F_ DD
the enable E = 1(one-enable) (MSI is mainly 0-enable) 01 0 0 0 1
o 0 1 0 1 0
—EX Fo 0 0 0 1 11
X Y F0 Fl FZ F3 :I)— Fo=EX'Y El 4_{)_ D 00 0 0 X X
, o 0 0 1 1 X X
0 o1 0 o0 o0 ID i 01 01 X X
- :D_D 0o 1 1 0 X X
| —FR=EXY F; —* ! 0o 1 1 1 X X
0 1 0 1 0 O I 0 0 1 X X
1 0 0 0 1 0 =)—FR=EXY Simple 4-to-2 1 0 1 0 X X
$ $ encoder : ? (1) (1) § ;g
1 1 0 0 0 1 LR 11 0 1 X X
| 1 1 0 X X
multiplexer: It steers one of 2" inputs to a single output Lo trox X
line, using n se_Iection lines. Also known as a data selector. priority encoder:
« A number of input lines - If two or more inputs or equal to 1, the input with the
« A number of selection lines highest priority takes precedence.
- One output line _ . If all inputs are 0, this input combination is considered
. Output of mglhpl.exer”ls sum of the (product of data invalid. Inputs Outputs
lines and selection lines)
= Example: Output of a 4-to-1 multiplexer is: Y = D, D D: Ds f g v
Qo . . 0 0 0 0 X X 0
l0:(S4"-Sy") + 11:(S4"Sy) + 1,1(S4-S,') +
1;(S,°Sy) = lyMy + I;'m, + l,ym, + 1om, SIS (N A A
X 1 0 0 0 1 1
L L L I, S8 Y Si Sy Y S & L 0 ! 0 !
do dy b &z 0 0 do 00 I X X X 1 1 1 1
do dy dy dy 0 1 4, 01 I , , . . :
do di d ds 1 0 dy 10 I demultiplexers: Given an input line and a set of selection
dy di & d5 1 1 ds 11 L lines, a demultiplexer directs data from the input to one
selected output line.
I“IP“‘S I“‘;‘"S demultiplexer circuit is actually identical to a decoder with
I‘l’ :’_‘l) 41 I‘l’ enable.
MUX Y
I —2 Y— Output I Outputs
I3 — I3 ffffffff .
%5, 5] Y=Disisy | S S Yo Vi Vs Y,
$) So e i 00 DO O O
sllelt select Data D bt _Disl So A 0 D O O
Y,=DiS;S¢ i 1 0 0 0 D 0
| i Y,=Dis;s, | L1 0 0 0D
A 2"-to-1-line multiplexer, or simply 2":1 MUX, is made s s Heeeeedd
from an n:2" decoder by adding to it 2" input lines, one to seloct
)
each AND gate. Q @1 J K Q @1 s R
. 0 o 0 X 0 0 0 X
° 0o 1 1 X 0 1 1 0
I _iD__ 1 0 X 1 1 0 0o 1
L — Y 1 1 X 0 1 1 X 0
L JK Flip-flop SR Flip-flop
olilsls @ a [0 aa |t
-to-4 — —_—
Decoder 0 0 0 0 0 0
]] 0o 1 1 0o 1 1
‘e #18: MS| B mpoSgts 1 0 0 1 0 1
11 |1 1.1 |0
D Flip-flop T Flip-flop

IFID

EXIMEM

MEMMWB

=y

Address

Read
register 1

Read
data 1

Read
regster 2
Registers Read
data2

16 2
Sign
extend

§ ID: Instruction Decode and Register Read

§ EX: Execute an operation or calculate an address
§ MEM: Access an operand in data memory

§ WB: Write back the result into a register

= At the end of a cycle, IF/ID receives (stores):

= Instruction read from InstructionMemory[PC]
= PC+4

= PC+4
= Also connected to one of the MUX's inputs (another coming later)

Instruction
memory

[nstructon

Write
data

1

=

At the beginning of a cycle
IF/ID register supplies:

« Data values read from
register file

% 82-bit immediate value

% PC + 4

+ Register numbers for reading
two registers

+ 16-bit offset to be sign-
extended to 32-bit

At the beginning of a cycle
ID/EX register supplies:

e

+ Data values read from » (PC + 4) + (Immediate x 4)

register file % ALU result
< 32-bit immediate value % isZero? signal
& PC + 4 + Data Read 2 from register file

T —— |

At the beginning of a cycle
EX/MEM register supplies:

X3

*

(PC + 4) + (Immediate x 4)
ALU result

isZero? signal

» Data Read 2 from register file

ALU result
Memory read data

X3
Se o
oo o

*

*
<

<

At the beginning of a cycle
MEM/WB register supplies:

% ALU result
+ Memory read data

+ Result is written back to
register file (if applicable)
« There is a bug here.......

EX Stage MEM Stage WB Stage

RegDst | ALUSrc OpfwoPopo ::::1 wt:l:e Branch M::° wl::ze
R-type 1 0 1 0 0 0 0 1
tw 0 1 0 0 1 0 0 1 1
il X 1 (] 0 0 1 0 X 0
beq | X 0 0 1 0 0 1 X 0

Single Cycle

§ Cycle time:

§ CTseq =yk=1NTk

§ Tk = Time for operation in stage k

§ N = Number of stages

§ Total Execution Time for I instructions:

Multi Cycle

§ Cycle time:

§ CTmulti =max(Tk)

§ max(Tk) = longest stage duration among the N stages
§ Total Execution Time for | instructions:

§ Timemuiti = Cycles x CycleTime = IxAverage

CPIxCTmulti
§ Average CPl is needed because each instruction takes
different number of cvcles to finish

Pipeline Cycle

§ Cycle time:

§ CTpipeline = max(Tk) + Tq

§ max(Tk) = longest time among the N stages

§ Tq = Overhead for pipelining, e.g. pipeline register

§ Cycles needed for I instructions:

§1+N -1

§ N - 1 is the cycles wasted in filling up the pipeline

§ Total Execution Time for I instructions:

§ Timepipeline = Cycle x CTpipeline = (I + N -1) x (max(Tk) +

Ideal Speedup

- Every stage takes the same amount of time

.« No pipeline overhead Tg=0

« Number of instructions | is much larger than number of
stages N

Speeduppipeline = Timeseq / Timepipeline

Pipeline processor can gain N times speedup, where N is

the number of pipeline stages

= Forward results
from one stage to
another

Reg
.

subs2, 51,83 m I 'EII.’ oM

sz, o, :] [= Bypass dataread

nd $12, 52,85 “ I E E ; I m : . m register file
B

I = D)

sw $15,100(52) @__ Regz_ ’ Iﬂrl @
Progam e Gndodcycks)
ﬁm Cl ac2 cCc3 aCc4 cCs cace a7 acs ac9 cCclo
(ninstructiors) M

wes208) | I all"

' f g here

and, 2,8 £ I'ﬁ.@ o

S el

w2

slt 81, $6, $7 @

6.1 REDUCE STALLS: EARLY BRANCH (3/3) - Hit Datais in cache (e.g. X

= Hit rate: Fraction of memory accesses that hit = Hit

il time: Time to access cache

execution ccl ccz ccs cca ccs cce cc1 ccs R . .

?:;;mcmns) branch and target address are decided here) M!SS. Data is nOt_ in cache (e'g" Y)
= Miss rate = 1 — Hit rate

= Miss penalty: Time to replace cache block + hit time
= Hit time < Miss penalty
Average Access Time = Hit rate x Hit Time + (1-Hit rate) x

40 beq $1, $3, 7

Miss penalty
72 1w $4,50(87)
) 3. MEMORY TO CACHE MAPPING (2/2)
2/30 words 2 words - 8 bytes
Address 8-byte blocks T Word ﬂ’fk
Time (in clock cycles) 00000 A\ Byte - I I l I
Program cCc1 ccz2 cCc3 cC4 cCcs cCé6 cc1 ccs cco
execution .. 00001 ‘RF ’H
(o::;lmc!ions) ..00010
add $s0, $s1, $s2 ! >Block0
% Observations:
: :g:iiz 1. 2N-byte blocks are aligned at 2¥-byte

beq $s0, $s3, Exit

boundaries
2. The addresses of words within a 2N-byte block

..00111

A

..01000
-.01001| v as have identical (32-N) most significant bits
..01010 (MSB).
Time (in clock cycles) ..01011 3. its [31N] => the block number
o 01100 F g IN-10] > Mempry HIYZERithin a block
e;:cut‘:‘n cC1 ccz2 cCc3 CC4 CCs CCé cCc1 ccs cCco e . 1t§l -1: '- ln a o

order ..01101
o matmsctions) ALU > ID g 1110 Wordd I-—Block Number —-|¢— Offset —-|
1w $30, 0($s1) forwarding cannot o
$oeE ..01111 pogh e e |
bew o0, 03, Bt Memory Address
N+M-1 N N-1 0
Lecture #21: Pipelining II: Hazards Tag Index < Offset

6.2 BRANCH PREDICTION: WRONG PREDICTION Gache Block size = 2N bytes

Time (in clock cycles) —
. Number of cache blocks = 2M
gram CC1 cC2 cc3 CC4 CCs CcCs6 cC1 ccs cCco9
execution
order

Memory Address
N N-1

(in instructions) M 31 0
o SIL EI .H= —@7 Milél;ry |~—Block Number —-Io— Offset —.I
44 and $12, $2, $5 @—i%@ Offset, N = 4 bits

Block Number = 32 — 4 = 28 bits
Check: Number of Blocks = 228

—
S i , P
U L 31 N+M-1 N N-1 0
L . l-— Tag —+— Index —-l'— Offset ——|
Branch is known to be taken in cycle 3
=>"and" instruction should not be executed Number of Cache Blocks

=> Flushed from pipeline = 16KB / 16bytes = 1024 = 210

Cache Index, M = 10bits

Write address (WA) and Cache Tag = 32-10-4 = 18 bits
._> value sent from
Read address (RA) sent
processor - cache o R
v)) Depends on caghe
In cache? Write Miss_, Write Miss Policy Read Miss = Access memory
[Tags Mismatch] (Write Allocate) [Tags Mismatch] block at RA
Write Hit OR [!Valid] or (Write Around) gR [Valid]) \11
[Tags Match] J Read Hit . Allocate cache
AND [Valid] , [Tags Mat.ch] lije
AND [Valid]
Depends on , ¥
(F\V;i'tifepl??a]::i{})’ Use Offset and Load into cache line
Writ delivery data to Set Tag and Valid bit
or (Write processor (if needed)

'y 6

Lecture #22: Cache I: Direct Mabped Cache Ravi Suppiah

[

How mar

p _ 2.DECODERS: IMPLEMENTING FIINCTIONS REVISIT (2./2

TPIs, 4EPIs
How mar
A
AB —
cD 00 01 11 10
00| 1 1 0| 1
0|0 | 0| 1] 1
nl|/ 1] 1 0| 1 L
C
ol1lo|1]1
H_/
B
ndata

input lines

n

k
k address lines +.

Read/Write —]

Memory unit
2k words
n bits per
word

= Write operation:
= Transfers the address of the desired word to the address lines.

2

n data
output lines

= Exercise: What modifications should be made to
provide an ENABLE input for the 3x8 decoder and the
4x16 decoder created in the previous two examples?

= Exercise: How to construct a 4x16 decoder using five
2x4 decoders with enable?

£(Q,X,P) = *m(0,1,4,6,7) = [M(2,3,5)

3x8 | 1| 3x8 | b
Dec ;2 Dec 2p
Q—Ao0 08 f(Q.X,P) Q—|A 3p f(Q.X,P)
= 1y =
X B os| [X B 5b
P—C1 oggld P—C 6 bJ| (m0'ml'm4"m6"m7)'
07 7b—) =mO0+ml+mé4+m6+m
7
(a) Active-high decoder with OR (b) Active-low decoder with NAND
gate. gate.
0 op
3x8 1 3x8 1p
Dec 2 f(Q,X,P) Dec 2 P HO.X.P)
Q—A 3 Q—A 3 p—
X — B 4 X — B 4p |
5 (m2+m3+m5)' 5 m2"m3"m5'
P—C 6] =m2'm3'm5' P—C 6p = M2:M3M5
7 = M2-M3:M5 p
(c) Active-high decoder with NOR gate.| (d) Active-low decoder with AND gate.z
Lecture #18: MSI Components Ravi Suppiah ‘!

= Transfers the data bits (the word) to be stored in memory to the
data input lines.

= Activates the Write control line (set Read/Write to 0).

* Read operation:
= Transfers the address of the desired word to the address lines.
= Activates the Read control line (set Read/Write to 1).

Memory Enable Read/Write

Memory Operation

0
1
1

X
0
1

None
Write to selected word
Read from selected word

= Two types of RAM
= Static RAMs use flip-flops as the memory cells.

= Dynamic RAMs use capacitor charges to represent data. Though
simpler in circuitry, they have to be constantly refreshed.

