

Sequential Circuit Design 

combinational circuit: each output depends entirely on
the immediate (present) inputs

sequential circuit: each output depends on both present
inputs and state

 ! Synchronous: outputs change only at specific time

 ! Asynchronous: outputs change at any time

Multivibrator: a class of sequential circuits

 § Bistable (2 stable states)

 ! Latches and flip-flops.

 ! differ in the methods used for changing state.

 § Monostable or one-shot (1 stable state) 
 § Astable (no stable state)  
Memory element: a device which can remember value
indefinitely, or change value on command from its inputs.
Two types of triggering/activation
! Level/Pulse-triggered

§ Latches	 	 § ON = 1, OFF = 0

! Edge-triggered
§ Flip-flops

§ Positive edge-triggered (ON = 0 to 1; OFF = other time)

§ Negative edge-triggered (ON = 1 to 0; OFF = other time)

X+X⋅Y=X

X+X’⋅Y=X+Y

X⋅Y+X⋅Z+Y⋅Z=X⋅Y+X’⋅Z

Y’⋅Z' + Y⋅Z=(Y⊕Z)'

Y'⋅Z + Y⋅Z’=Y⊕Z

X+Y=(X⊕Y)+X⋅Y

Precedence from highest to lowest: Not (') And (⋅) Or (+)

minterm - product term - SOP - find 1

maxterm - sum term - POS - find 0

Each minterm is the complement of the maxterm
SOP - 2-level AND-OR/NAND circuit

POS - 2-level OR-AND/NOR circuit

PLAs may not be able to implement a given mapping due
to not having enough minterms.
Half Adder:

C = X∙Y, S = X'∙Y + X∙Y’ = X ⊕ Y 
K-Maps -> SOP

Gate-Level (SSI) Design: Full-Adder, Code Converter

C = X⋅Y + (X⊕Y)⋅Z, S = X⊕(Y⊕Z)
Block-Level Design: block: 4-bit parallel/ripple-carry
adder: Ci+1 = Xi ⋅Yi + (Xi ⊕Yi)⋅Ci, Si =Xi ⊕Yi ⊕ Ci

Given a logic gate with delay t. If inputs are stable at
times t1, t2, ..., tn, then the earliest time in which the
output will be stable is: max(t1,t2,...,tn) + t

1 KB= 210

bytes;

1 MB = 220

bytes;

1 GB = 230

bytes;

1 TB= 240

bytes.

Flip-Flops: synchronous bistable
• Output changes state at a specified

point on a triggering input called the
clock.

• Change state either at the positive
(rising) edge, or at the negative
(falling) edge of the clock signal.

Note “>” symbol at the clock input.
> positive, o> negative edge-triggered

S-R flip-flop: On the triggering edge
of the clock pulse

positive edge-triggered S-R flip-flop

D flip-flop: On the triggering edge of
the clock pulse

J-K flip-flop: Q and Q' are fed back to
the pulse-steering NAND gates.

S-R Latch: Q(t+1)=S+R’•Q, S•R=0

Active-High

Active-Low

Gated D Latch: Q(t+1)=D

T flip-flop: Single input version of the
J-K flip-flop Q(t+1)=T•Q’+T’•Q

 

encoder: exactly one input line is high and the rest are low,
D0 =F1+F3, D1 =F2+F3

priority encoder:
• If two or more inputs or equal to 1, the input with the

highest priority takes precedence.

• If all inputs are 0, this input combination is considered

invalid.

demultiplexers: Given an input line and a set of selection
lines, a demultiplexer directs data from the input to one
selected output line.
demultiplexer circuit is actually identical to a decoder with
enable.

decoder: Convert binary information from n input lines to
(a maximum of) 2n

output lines.

• Known as n-to-m-line decoder, or simply n:m or n x m
decoder (m ≤ 2n).

• May be used to generate 2n minterms of n input
variables.

SOP = decoder to generate minterms + OR gate to form the
sum
enable control signal: the device is only activated when
the enable E = 1(one-enable) (MSI is mainly 0-enable)

multiplexer: It steers one of 2n

inputs to a single output

line, using n selection lines. Also known as a data selector.

• A number of input lines

• A number of selection lines

• One output line

! Output of multiplexer is “sum of the (product of data
lines and selection lines)”
! Example: Output of a 4-to-1 multiplexer is: Y =
I0·(S1'·S0') + I1·(S1'·S0) + I2·(S1·S0') +

I3·(S1·S0) = I0·m0 + I1·m1 + I2·m2 + I3·m3

A 2n-to-1-line multiplexer, or simply 2n:1 MUX, is made
from an n:2n

decoder by adding to it 2n

input lines, one to

each AND gate.

§ IF: Instruction Fetch 
§ ID: Instruction Decode and Register Read 
§ EX: Execute an operation or calculate an address

§ MEM: Access an operand in data memory 
§ WB: Write back the result into a register

Single Cycle

§ Cycle time:

§ CTseq =∑k=1NTk

§ Tk = Time for operation in stage k

§ N = Number of stages

§ Total Execution Time for I instructions:

Multi Cycle

§ Cycle time:

§ CTmulti =max(Tk)

§ max(Tk) = longest stage duration among the N stages

§ Total Execution Time for I instructions:

§ Timemulti = Cycles × CycleTime = I×Average
CPI×CTmulti

§ Average CPI is needed because each instruction takes
different number of cycles to finish
Pipeline Cycle

§ Cycle time:

§ CTpipeline = max(Tk) + Td

§ max(Tk) = longest time among the N stages

§ Td = Overhead for pipelining, e.g. pipeline register

§ Cycles needed for I instructions:

§ I + N -1

§ N - 1 is the cycles wasted in filling up the pipeline
§ Total Execution Time for I instructions:

§ Timepipeline = Cycle × CTpipeline = (I + N -1) × (max(Tk) +

Ideal Speedup

• Every stage takes the same amount of time

• No pipeline overhead Td=0

• Number of instructions I is much larger than number of

stages N

Speeduppipeline = Timeseq / Timepipeline

Pipeline processor can gain N times speedup, where N is
the number of pipeline stages

! Hit: Data is in cache (e.g., X) 
! Hit rate: Fraction of memory accesses that hit ! Hit
time: Time to access cache
! Miss: Data is not in cache (e.g., Y) 
! Miss rate = 1 – Hit rate 
! Miss penalty: Time to replace cache block + hit time
! Hit time < Miss penalty 
Average Access Time = Hit rate x Hit Time + (1-Hit rate) x
Miss penalty

! Two types of RAM
! Static RAMs use flip-flops as the memory cells.
! Dynamic RAMs use capacitor charges to represent data. Though
simpler in circuitry, they have to be constantly refreshed.

