
HTTP - stateless protocol

URL = the hostname of the server that
houses the object + the object's path name

persistent connection - default

RTT(round-trip time) = packet-propagation
delay + packet-queuing delays in
intermediate routers and switches + packet-
processing delays

For each connections, TCP buffers must be
allocated and TCP variables must be kept in
both the client and server - can place a
significant burden on the Web server

HTTP Request

GET /~cs2105/demo.html HTTP/1.1
Host: www.comp.nus.edu.sg
User-Agent: Mozilla/5.0
Connection: close

\r\n

\r\n

\r\n

\r\n

\r\n

All browsers today call
themselves Mozilla

http://webaim.org/blog/user
-agent-string-history/

For a full list of HTTP Headers, see
www.w3.org/Protocols/rfc2616/rfc2616-sec14.htm

All lines ends
with this

Request Type:
GET method

Blank line marks end of headers

request line: the method field, the URL field, the HTTP

required by Web

non-persisten connections

the browser type that is

header lines

Entity body

Empty with the GET method, but is used with the POST method

Contains what the user entered into the form fields

HTTP Response
HTTP/1.1 200 OK
Date: Wed, 01 Jul 2015 08:47:52 GMT
Server: Apache/2.4.6 (Unix) OpenSSL/1.0.1m
Accept-Ranges: bytes
Connection: Keep-Alive
Content-Length: 73
Content-Type: text/html
Keep-Alive: timeout=5, max=100

<!DOCTYPE html>
<html lang="en">
…

Status line: Protocol
and response code

Blank line marks
end of header

Data, e.g. requested
HTML file

status line: the protocol version field, the status code/msg

header lines

Date: … - the time and date when the HTTP response was
created and sent by the server

Server: … - the message was generated by … Web server -
analogous the the User-agent:

Last-Modified: … - the time and date when the object was
created or last modified - critical for object caching, both in
the local client and in network cache servers

Content-Length: … - the number of bytes in the object
being sent

Content-Type: … - the object type in the entity body

Protocols

A protocol defines the format and the order of
messages exchanged between two or more
communicating entities, as well as the actions
taken on the transmission and/or receipt of a
message or other event.

Applications communicate using protocol.

Application-layer Protocols

• Types of messages exchanged: request,

response

• Message syntax: what fields & how fields

are delineated

• Message semantics: meaning of

information in fields

• Rules: for when and how applications send

& respond to messages

• Open protocols: defined in RFCs, allows for

interoperability

• Proprietary protocols

Internet Service Providers (ISPs) - network of
packet switches and communication links.

• A variety of types of network access to the

end system.

• Internet access to content providers,

connecting Web sites and video servers
directly to the Internet.

• Each ISP network, whether upper-tier or
lower-tier, is managed independently.

Connecting the Internet
• Content providers like Google or Akamai might

even run their own network
- to bring services content closer to users

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

ISP B

ISP A

ISP C

IXP

IXP

regional net

Content provider
network

packet switch faster for shorter msg

if packet arrival faster than departure: buffer
overflow problem - packet lost

Each packet switch has multiple links
attached to it.

Each attached link has an output buffer
(output queue)

Processing delay(micro)

Time required to examine the packet's header
and determine where to direct the packet.
The time needed to check for bit-level errors
in the packet that occurred in transmitting the
packet's bits from the upstream node to
router A

Queuing delay(micro to milli)

Time the packet waits to be transmitted onto
the link - (𝒏𝑳 + (𝑳 − 𝒙))/𝑹

Transmission delay(micro to milli)

Time required to push all of the packet's bits
into the link - 𝑳/𝑹

Propagation delay(milli)

Time required to propagate from the
beginning of the link to router B - d/s

Traffic intensity: La/R a:packets/sec

Bandwidth delay:

The product of number of bits that can be
flowing in the link at one time - R × dprop

Throughput - rate - high or low

How many bits can be transmitted per unit
time

Instantaneous throughput at any instant of
time - rate at which Host B is receiving the file
- bits/sec

Throughput is the bottleneck link

measured for end-to-end communication

Link capacity(bandwidth): meant for a
specific link

TCP

• Full-duplex connection: two processes can

send messages to each other over the
connection at the same time

• Congestion-control: attempts to limit each
TCP connection to its fair share of network
bandwidth

• Flow-control:Prevents sender from flooding
receiver

• Easily enchanced at the application layer
with SSL to provide security services

UDP

Doesn't include congestion-control

Cookies - 4 components

Allow sites to keep track of users

A cookie header line in reponse message

A cookie header line in request message

A cookie file kept on the user's end system
and managed by the user's browser

A back-end database at the Web site
Keeping User State with Cookie

client server

cookie file

one week later:

cookie-
specific
action

access

Amazon server
creates ID

1678 for user create
entryamazon 1678

cookie-
specific
action

access

amazon 1678

backend
database

Web caching - proxy server

A network entity that satisfies HTTP requests
on the behalf of an origin Web server.

Has its own disk storage and keeps copies of
recently requested objects in this storage

Both a server and a client

• TCP connection - browser & Web cache

• (optional) TCP connection - Web cache &

the origin server

Can substantially reduce the response time
for a client request

Can substantially reduce traffic on an
institution's access link to the Internet -
doesn't have to upgrade bandwidth, reducint
costs. Reduce Web traffic in the Internet as a
whole, improving performance for all
applications.

Conditional GET
Goal: don’t send object if
(client) cache has up-to-
date cached version
cache: specify date of
cached copy in HTTP
request
If-modified-since:

<date>
server: response contains
no object if cached copy is
up-to-date:
HTTP/1.0 304 Not

Modified

object
not

modified
after

<date>

object
modified

after
<date>

client server

Conditional GET - GET method + If-Modified-
Since: header line

A mechanism that allows a cache to verify
that its objects are up to date

DNS

root DNS servers - over 400 - provide the IP
addresses of the TLD servers

top-level domain(TLD) DNS servers - provide
the IP addresses of the authoritative DNS
servers, responsible
for .com, .org, .net, .edu, .uk, .sg

authoritative DNS servers - houses records

DNS Resource Record
Mapping between host names and IP addresses (and
others) are stored as Resouce Records (RR)

RR Format: <name, value, type, TTL>
Type Name Value
A (adress) Hostname IP Address
NS (name server) Domain, e.g nus.edu.sg Hostname of authoritative name

server for domain
CNAME (canonical
name)

Alias for real name, e.g.
www.comp.nus.edu.sg

The real name, e.g.
www0.comp.nus.edu.sg

MX (mail exchange) Domain of email address Name of mail server managing
the domain

Local DNS Server - each ISP has one

Resource records (RRs)

Hostname-to-IP address mappings

Each DNS reply message carries one or more
resource records (Name, Value, Type, TTL)

nslookup/dig

For reading text

For reading bytes

Scanner
new Scanner()

Wrapping Streams

Reader
new BufferedReader()

InputStream
socket.getInputStream()Scanner textIn =

InputStream
new BufferedInputStream()

InputStream
socket.getInputStream()BufferedInputStream byteIn =

Wrapping Streams
For reading both text and bytes?

java.io.DataInputStream
- .read(byte[] b)
- .readLine()Å Deprecated
- Because method fails to handle UTF8 properly
- But still safe if you are only reading ASCII, e.g. HTTP Headers

java.net.HttpURLConnection
- parses header for you

can both read bytes and lines

only have one input stream

transport layer invisible to client and server

Host Request for the IP address

DHCP server ACK assignment

Dynamic Host Configuration Protocol(DHCP)

server: 67, client: 68

Link-State Algo

• Routers周期性broadcast link cost to each other

• Compute least cost path locally

Distance Vector Algorithms

Routers only know

• physically connected neighbours

• and link costs to neighbours

✓Decentralized ✓ Self-terminating

✓ Iterative✓ Asynchronous

Bellman-Ford Equ: dx(y)=mini{c(x, i) + di(y)}

ping/traceroute

IP datagram structure

Internet Control Message Protocol(ICMP) datagram structure

Routing Information Protocol(RIP)

• Implements DV algorithm - hop count = cost

• Entries in the routing table - all subnet masks

• Exchange routing table per 30s (over UDP #52)

• If no update from a neighbour for 3 mins, assue

neighbour died

Ethernet Switch

• Store and forward Ethernet frames

Examine incoming frame's MAC address

Selectively forward frame to one-or-more
outgoing links

• Transparent to hosts: No IP address

• Star topology, Full duplex, Buffered

MAC Address - 6 bytes, permanent

• Every adapter (NIC) has a MAC address

• Used to send & receive link layer frames

Address Resolution Protocol (ARP)

Each IP node (host, router) has an ARP table

Stores mapping of IP address to MAC
address of other nodes in the same subnet

Sending frame in the same subnet (A to B)

• A knows B’s MAC address from its ARP

table

Construct frame with B’s MAC address as
destination address

• A doesn't know B's MAC address

Broadcast ARP query packet with B's IP
address (broadcast address:
FF:FF:FF:FF:FF:FF); B replies with MAC
address; A caches it in ARP table

• Sending fram to different subnet (A to X)

Send with MACX; Send to router MACR1 -
IPX; MACR1 -> IPX; MACR2

Local Area Network (LAN) - geographical area

Ethernet - wired (dominant)

Data Delivery Service

• Connectionless - no handshaking

• Unreliable - no ACK/NAK sent

• MAC - CSMA/CD

Preamble: 
• 7 bytes of 10101010 followed by
10101011

• Used for hardware clock synchronization

MAC Addresses:

• 6 bytes each

Type: 
• Indicate higher level protocol 
• Mostly IP, but others include Novell IPX,
Apple Talk, etc

CRC: 
• Error detection and correction

Symmetric Key Cryptography

DES (Data Encryption Standard)

AES (Advanced Encryption Standard)
Public Key Cryptography

RSA (Rivest, Shamir, Adelson algorithm)

Cryptographic Hash Functions

input m -> fixed size str, msg digest H(m)

MD5 (Message Digest) and SHA-1 (Secure
Hash Algorithm)

Message Authentication Code (MAC)

a key is used as part of MD generation

H(m+S)⊕m

HmacMD5, HmacSHA1, HmacSHA256

cannot prove MAC is produced by who

Digital Signature KA

-(H(m))⊕m

Link Layer

• Framing

• Link Access Control

• Reliable Delivery (often used on error-

prone links)

• Error Detection &/ Correction

Error Detection & Correction

ChkSum: TCP/UDP/IP - complex, slow

Parity Checking

if no error, even number of 1s, XOR return 0

Cyclic Redundancy Check(CRC) - link layer

𝐷2𝑟 + 𝑅 = 𝑘𝐺 - Generate CRC of 𝑟 bits

• 𝐷: data bits, viewed as a binary number

• 𝐺: a chosen generator of 𝑟 + 1 bits

• 𝑅: remainder of 𝐷2𝑟/𝐺

Receiver knows 𝐺, divides 𝐷2𝑟 + 𝑅 by 𝐺 - 0

Multiple Access Control (MAC)

distribute algo - how nodes share channels

no out-of-band channel signaling

Channel partitioning protocols

• Channel is shared fairly and efficiently if
most nodes have data to send

Time/Frequency/Code-DMA

Taking turns protocols 
Polling from master node/token passing

• Efficient at both low and high load

• Single point of failure

• Polling overhead

• (token: Latency)

Random access protocols 
• Efficient at low load: single node can fully
utilize channel

• High collision rate at high load: wasted
channel time

Carrier Sense Multiple Access(CSMA)

sense channel before transmission

CSMA/CD

stop talking once collision is detected
Retransmit after a random amount of time

Ethernet - at least 64 bytes

CSMA/CA

Request to send/clear to send (RTS/CTS)
ACK for received frame

Retransmission Algorithm

Slotted ALOHA - the more collision you
have, the lower priority you are

CSMA/CD - At 𝑛th consecutive collision: 𝑚
= min (𝑛, 10), Pick 𝑘 ∈ {0,1,…,2𝑚-1}, wait
512×𝑘 bit-time

Frequency Shift Keying is limited by bandwidth,
if f1>f0, bandwidth = f1-f0

 

Non-Return to Zero (NRZ) (0, 1)

Return to Zero (RZ) (-1, 0, 1) bit slip (x)

Higher bandwidth required

Non-Return to Zero-Level (NRZ-L)

Bit-0: -V		 Bit-1: +V

Non-Return to Zero-Invert (NRZ-I)

Bit-0: no inversion	 Bit-1: inversion

Bit-slip: sender has a faster clock than the
receiver - may have inversion in the middle,
the longer you send all 1s, the more
problematic it may be

Manchester bit slip (x)

Bit-0: 	 	 Bit-1:

Differential Manchester bit slip (x)

Bit-0: no inversion	 Bit-1: inversion

Nyquist Bit-Rate Formula - ideal noise-less

2𝐵 × log2 𝐿

• 𝐵 is the channel bandwidth 
• 𝐿 is the number of signal levels

Shannon Channel Capacity - noisy channel

𝐵 × log2 (1 + SNR)

• SNR is the measure of the strength of signal

over noise

Extending host-to-host delivery to process-
to-process delivery is called transport-layer
multiplexing and demultiplexing

Integrity checking - by including error-
detection fields in their segments' headers

UDP segment structure

source port destination port
length (inc. header) checksum

Application data
(message)

1 16 17 32
32 bits

UDP
header

Length: the number of bytes in the UDP
segment = header + data

UDP checksum

At the sender side: 1s complement of the
sum of all the 16-bit words in the segment,
any overflow during the sum is wrapped
around

At the receiver side: all 16-bit words are
added + checksum

It all 1 -> no errors

Utilization

The fraction of time the link is actually being
used

throughput = L/(RTT+dtrans)

Usender = dtrans/(RTT+dtrans)

Pipelining has the following consequences for
reliable data transfer protocols:

• The range of seq numbers must be

increased

• The sender and receiver sides of the

protocols may have to buffer more than one
packet - buffer packets that have been
transmitted but not yet ACKed

• The range of seq numbers needed and the
buffering requirements will depend on GBN
or selective repeat

GBN - sliding-window protocol

ACK n means all packets ≤ n have been
received

Constrained to have no more than N of
unACKed packets in the pipeline

Keep track of N unACKed packets. Timer for
oldest unACKed packet. On timeout,
retransmit all packets.

GBN Sender

• can have up to N unACKed packets in

pipeline.

• insert k-bits sequence number in packet

header.

• use a “sliding window” to keep track of

unACKed packets.

• keep a timer for the oldest unACKed

packet.

• timeout(n): retransmit packet n and all

subsequent packets in the window.

GBN Receiver

• only ACK packets that arrive in order. 
• simple receiver: need only remember
expectedSeqNum

• discard out-of-order packets and ACK the
last in-order seq. #.

• Cumulative ACK: “ACK m” means all
packets up to m are received.

0 1 2 3 4 5 6 7 send pkt6

Go-back-N in action
sender receiver

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 rcv ACK2, send pkt4

pk3 timeout

send pkt1
send pkt2
send pkt3

send pkt0
rcv pkt0, send ACK0
rcv pkt1, send ACK1
rcv pkt2, send ACK2
rcv pkt3, send ACK3

rcv pkt4, send ACK4
rcv pkt5, send ACK5
rcv pkt6, send ACK6

0 1 2 3 4 5 6 7 send pkt5

0 1 2 3 4 5 6 7 (re)send pkt3
0 1 2 3 4 5 6 7 (re)send pkt4
0 1 2 3 4 5 6 7 (re)send pkt5
0 1 2 3 4 5 6 7 (re)send pkt6

rcv pkt 3, discard, send ACK6
rcv pkt 4, discard, send ACK6
rcv pkt 5, discard, send ACK6
rcv pkt 6, discard, send ACK6Go-back-N in action

sender receiver

pk1 timeout

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

send pkt0
send pkt1
send pkt2
send pkt3
send pkt4
send pkt5

rcv pkt0, send ACK0

rcv pkt2, discard, send ACK0
rcv pkt3, discard, send ACK0
rcv pkt4, discard, send ACK0
rcv pkt5, discard, send ACK0

send pkt60 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

send pkt1
send pkt2
send pkt3
send pkt4
send pkt5

SR

One timer per packet, receiver needs a buffer

A window size of N will be used to limit the
number of outstanding, unACKed packets in
the pipeline

The sender will have already received ACKs
for some of the packets in the window

Sender

data from above:

- if next available seq # in window, send pkt

timeout(n):

- resend pkt n, restart timer

ACK(n) in [sendbase, sendbase+N]

- mark pkt n as received  
- if n is smallest unACKed pkt, advance
window base to next unACKed seq. #  
Receiver

pkt n in [rcvbase, rcvbase+N-1]

- send ACK(n)

- out-of-order: buffer

- in-order: deliver (also deliver buffered, in-
order pkts), advance window to next not-yet-
received pkt

pkt n in [rcvbase-N, rcvbase-1]

- ACK(n)

otherwise: - ignore

TCP Flow Control
Receiver buffers data to application

Tells sender how much data it can send

0 – 4,999 5,000 – 5,999

Data delivered
to application

Data awaiting
delivery

rwnd

0 – 5,499 6,500 – 8000

ACKed data unACKed data

rwnd

Receiver buffer

5,500 – 6,499

data to send

Selective Repeat in action
sender receiver

0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 1 2 3 4 5 6

rcv ACK0, send pkt40 1 2 3 4 5 6
rcv ACK1, send pkt50 1 2 3 4 5 6

pk2 timeout
(re)send pkt2

rcv ACK30 1 2 3 4 5 6

0 1 2 3 4 5 6 rcv ACK4

0 1 2 3 4 5 6 rcv ACK2, send pkt6

rcv ACK50 1 2 3 4 5 6

send pkt1
send pkt2
send pkt3

send pkt0
rcv pkt0, send ACK0
rcv pkt1, send ACK1

rcv pkt3, buffer, send ACK3

rcv pkt4, buffer, send ACK4
rcv pkt5, buffer, send ACK5

rcv pkt 2, deliver pkt3-5,
send ACK2

Windows

Sender and Receiver Windows

10 11 12 13 145 6 7 8 940 1 2 3

10 11 12 13 145 6 7 8 940 1 2 3 15 16 17

15

18

Already ACK

Sent, not yet ACK

Usable, not yet sent

Not usable

16 17 18

Out of order,
Buffered and ACK’d

Expected, not yet
received

Acceptable,
within window

Not usable

Consistent view from
both sender and receiver

Inconsistent view: Packet
received but sender still
waiting for ACK.
Perhaps ACK still in flight.

Inconsistent view.
ACK confirm lost

or corrupted

send_base next_seq_num

rcv_base

Sender's view

Receiver's view

Window size N

Window size N

this window size cannot be too
big, otherwise receiver cannot
buffer the sent packets, which is
wasting time

TCP

not run in intermediate network elements
(routers & link-layer switches)

Maximum segment size(MSS): the maximum
amount of application-layer data (data field) in
the segment, not including headers

Maximum transmission unit(MTU): the length
of the largest link-layer(which has physical
limitation) frame that can be sent by the local
sending host (on all links from src to des)
TCP segment structure

source port destination port
sequence number

acknowledgement number

length U
RG AC

K
PS

H
RS

T
SY

N
FI

N receive window

checksum

options

Application data
(message)

1 16 17 32
32 bits

TCP
header

Receive window: 16-bit, flow control, used to
indicate the number of bytes that a receiver is
willing to accept

Header length: 4-bit, specifies the length of
the TCP header in 32-bit words. If the options
field is empty, TCP header is 20 bytes

Options field: optional and variable-length,
used when a sender and receiver negotiate
the MSS or as a window scaling factor for use
in high-speed networks.

Flag field: 6 bits - ACK bit; RST, SYN, FIN bits
- connection setup and teardown; CWR, ECE
bits - explicit congestion notification; PSH bit
- the receiver should pass the data to the
upper layer immediately; URG - indicate that
there is data in this segment that the sending-
side upper-layer entity has marked as 'urgent'

Urgent data field: 16-bit, the location of the
last byte of this urgent data

Seq numbers and ACK numbers

TCP views data as an unstructured, but
ordered, stream of bytes

The ACK number that Host A puts in its
segment is the seq number of the next byte
Host A is expecting from Host B

Cumulative acknowledgments

RTT estimation and timeout

exponential weighted moving average(EWMA)

Timeout > RTT

𝑅𝑇𝑇𝜀=(1−𝛼)∙𝑅𝑇𝑇𝜀+𝛼∙𝑅𝑇𝑇𝑠 (𝛼 = 0.125)

Setting retransmission time out (RTO)

𝑅𝑇𝑇dev=(1-𝛽)∙𝑅𝑇𝑇dev+𝛽∙|𝑅𝑇𝑇𝑠-𝑅𝑇𝑇𝜀| (𝛽 = 0.25)

RTO Interval is set to 𝑅𝑇𝑇𝜀 +4 ×𝑅𝑇𝑇dev

a) What is the URL of the document requested
by this browser?

www.comp.nus.edu.sg/~cs2105/demo.html

d) What is the IP address of the host on which
the browser is running?

IP address is not shown in HTTP message.
One would be able to get such information
from socket.

e) What type of browser initiates this
message? Why is the browser type useful in
an HTTP request message?

Mozilla. The browser type information
sometimes is useful for server to send
different versions of the same object to
different types of browsers.

a) Was the server able to successfully find the
document or not?

The status code 200 and the phrase OK
indicate that the server was able to locate
the document successfully.

b) What time did the server send the HTTP
response message?

The HTTP response message was formed
on Tuesday, 20 Jan 2015 10:08:12
Greenwich Mean Time.

c) How many bytes are there in the document
being returned?

There are 73 bytes in the document being
returned.

d) Did the server agree to a persistent
connection?

The server agreed to a persistent
connection, as indicated by the header
field ‘Connection: Keep-Alive field’.

a) Non-persistent HTTP with no parallel TCP
connections?

3 x DDNS+ (5 + 1) x 2 x DWeb

b) Non-persistent HTTP with the browser
configured for five parallel connections?

3 x DDNS +2 x DWeb +2 x DWeb

Need to fetch HTML file first (2 x DWeb).
Subsequently the rest 5 objects can be
fetched in parallel each using a TCP
connection (2 x DWeb).

c) Persistent HTTP with pipelining?

3 x DDNS +2 x DWeb +DWeb

Need to fetch HTML file first (2 x DWeb). The
rest 5 objects can be fetched through the
same TCP connection in parallel – no RTT
for TCP handshake needed.

It is generally a reasonable assumption, when
sender and receiver are connected by a single wire,
that packets cannot be reordered within the channel
between the sender and receiver. However, when
the “channel’ connecting the two is a network,
packet reordering may occur. One manifestation of
packet reordering is that old copies of a packet with
a sequence or acknowledgement number of x can
appear, even though neither sender’s nor receiver’s
window contains x. With packet reordering, the
channel can be thought of as essentially buffering
packets and spontaneously emitting these packets at
any point in the future. What is the approach taken
in practice to guard against such duplicate packets?
The approach taken in practice is to ensure that a
sequence number is not reused until the sender is
“sure” that any previously sent packets with the
same sequence number are no longer in the
network.
Firstly, TCP use large sequence number field (32-
bit) to lower the chance a sequence number is to be
reused.
Secondly, a packet cannot “live” in the network
forever. For example, IP protocol specifies TTL in
packet header to ensure that datagrams do not
circulate infinitely in the network. This field is
decreased by one each time the datagram arrives at
a router along the end-to-end path. If TTL field
reaches 0, router will discard this datagram. In
practice, a maximum packet lifetime of
approximately three minutes is assumed in the TCP
extensions for high-speed networks.

5. RIP is an application layer problem. How
does it implement network-layer
functionality?

Ans: RIP uses a transport-layer protocol
(UDP) on top of a network layer protocol (IP)
to implement network-layer functionality
(e.g., a routing algorithm).

6. Two hosts A and B participate in a peer-to-
peer 
file sharing application and need to connect
to each other. Both A and B, however, are
behind NATs.

Devise a technique that will allow A to
establish a TCP connection with B without
application specific NAT configuration, if...

(a) the NAT router uses a simple, predictable,

algorithm to allocate a public port
number for mapping to the local/private
port number. Ans: It is not possible to
devise such a technique. In order to
establish a direct TCP connection
between A and B, either must initiate a

There are many nodes in a shared medium
network and most nodes are likely to
transmit frequently. Which of the following
multiple access protocol(s) is (are) suitable?
(1) TDMA; (2) CSMA; (3) Token passing.

TDMA and token passing are suitable
because there is sufficient work to do to
utilize the “fixed” resources allocated.

CSMA is not because many nodes
competing for the shared channel can result
in lots of collision. Utilization will be low.

Application Layer - message - end system

- HTTP, SMTP, FTP, POP, REST, BT

Transport Layer - segment - app
endpoints(process)

- TCP, UDP

Network Layer(IP layer) - datagrams - host
and routers

- IP, ICMP, routing protocols(RIP, OSPF, BGP,
Path selection)

determine which output link/the route should
follow

Link Layer - frames - node

- Ethernet, WiFi, DOCSIS protocol

Physical Layer - individual bits within the
frame - wire/air

- QAM, OFDM, TDM, NRZ, Manchester

IP: 32-bit	 port number: 16-bit (1-
1023 reserved)

Internet - packet switching network

DHCP -> UDP

RIP -> UDP on top of IP

TCP -> use service provided by IP

HTTP -> TCP as transport protocol

DNS -> UDP #53

• Finer application-level control over what

data is sent and when

• No connection establishment

• No connection state: Can support many

more active clients when the application
runs over UDP rather than TCP

• Small packet header overhead

 TCP: 20 bytes of header overhead in every
segment

 UDP: 8 bytes

Network edge: end hosts, servers

Network core: ISPs, Routers

hosts = client+server

Unshielded twisted pair copper wire - LANs

Coaxial cable - guiede shared medium

Fiber optics - long-distance

TCP Timeout/Retransmission
sender receiver

Cumulative ACK prevents rxmt

timeout
interval

TCP Sender Events (simplified)
loop(forever)

switch(event)
event: data received from application

create TCP segment with nextSeqNum
if (timer not currently running)

start timer
pass segment to IP
nextSeqNum += length(data)

event: timer timeout
retransmit unacknowledged segment with smallest seq num
start timer

event: ACK received, with ACK num #y
if (y > sendBase)

sendBase = y
if (there are still unacknowledged segments)

start timer

Sender only
keeps one timer

Retransmit only oldest
unACK segment

Cumulative ACK

TCP Receiver Events

Segment
Received

In-order
segment

All data already ACKed
• Wait up to 500ms for next segment
• Send ACK if no segment arrives

Outstanding segment not ACKed
• Send cumulative ACK immediately

Out-of-order segment with higher seq# than expect. (Gap is created)
• Immediately send Duplicate ACK of expected byte

Segment partially or completely fills gap
• Send cumulative ACK immediately

0 – 4,999 5,000 – 5,999

1. Recv #5000

Wait 500 ms

6,000 – 6,999

2. Recv #6000

Send ACK #7000

7,000 – 7,999 8,000 – 8,999 9,000 – 9,999

3. Recv #9000

Send ACK #7000

4. Recv #7000

Send ACK #8000
Send ACK #10,000

5. Recv #8000

