

 

Multiprogramming: loads multiple jobs and runs
other jobs when I/O needs to be done

Time-Sharing OS: Allow multiple users to interact
with machine using terminals

Stack Memory Region: dynamically used by
function invocations, a memory region to store info
from function invocation

The top of stack region (first unused location) is
logically indicated by a Stack Pointer (SP)

getpid - Library call that has the same name as a system call
printf, exit(0) - Library call that make a system call
getenv()/putenv()
System calls used:
! fork(), wait() family
! getpid: does actual trap to execute real getpid system call
! write: called by printf
! close: called by exit , _exit: called by exit
! exec() family" Code + data replacement – essentially
changing executable " PID and other state preserved, e.g.
open files

exception: machine level
instruction: arithmetic errors,
memory accessing errors
Have to execute a exception
handler, Similar to a forced
function call
interruption: external events:
hardware related
Program execution is
suspended, Have to execute an
interrupt handler
(Process / Task / Job) is a
dynamic abstraction for
executing program
! Kernel maintains PCB for all
processes
" Conceptually stored as one
table representing all processes

1.User program invokes the library call

2.Library call places the sys call number
in a designated location, e.g. reg

3.Library call executes a special
instruction to switch to kernel mode:
TRAP or SYSCALL

4.The appropriate system call handler is
determined, handled by a dispatcher

5.System call handler is executed: carry
out the actual request

6.System call handler ended: control
return to library call, switch to user
mode

7.Library call return to the user program

When GPRs are exhausted:  
" Use memory to temporary hold the GPR value
" That GPR can then be reused for other purpose
" The GPR value can be restored afterwards 
" known as register spilling

on executing function call:
caller: pass arguments with registers and/or stack

caller: save return PC on stack

transfer control from caller to callee

callee: save registers used by callee. Save old FP, SP

callee: allocate space for local variables of callee on
stack

callee: adjust SP to point to new stack top

on returning from function call
callee: restore saved registers, FP, SP

transfer control from callee to caller using said PC

caller: continues execution in caller

How to Context Switch between Processes
Transition from running process A to another
running/ready process B: (rough)
! make Process A no longer runnable: 
" save CPU (+ OS) context of process A, e.g.
save registers (PC+SP+other registers) to PCB of
process A
" set process A state to READY
! Make Process B runnable: 
" existing B process: restore registers (+ OS)
context of process B from PCB of process B
" new B process: set context to defaults
" set process B state to RUNNING
" set PC to be in B (depends on how syscall
works)
! memory context should be switched as well
(logical view should be of process B's memory,
affects caches – so cost is not just in registers but
cache misses!)
! switch OS context

Simplified implementation:  
1. Create address space of child process
2. Allocate p' = new PID
3. Create kernel process data structures ! E.g.Entry in ProcessTable 
4. Copy kernel env of parent process ! E.g.Priority(for process scheduling)
5. Initialize child process context: ! PID=p’,PPID=parent id, zero CPU time
6. Copy memory regions from parent ! Program, Data, Stack (more later)
7. Acquires shared resources: ! Open files, current working directory etc
8. Initialize hardware context for child process: ! Copy registers, etc.
9. Child process is now ready to run ! add to scheduler queue

void _exit(int status)
! _exit system call used for immediate
voluntary termination of process (never returns!).
! Closes all open file descriptors; children
processes are inherited by init process;
! parent sent SIGCHLD signal
! status returned to parent using wait()  
! Usually status is used to indicate errors
Some basic process resources not yet
releasable:
! PID & status needed: For parent-children
synchronization
! Process accounting info, e.g. cpu time #
Process table entry may be still needed

wait sys call
" The call is blocking:
! Parent process blocks until at least one
child terminates
" The call cleans up remainder of child
system resources 
! Those not removed on exit()  
! Kill zombie process
Cannot delete all process info
! What if parent ask for the info in a wait()
call?
! Remainder of process data structure
can be cleaned up
" only when wait() happens
Zombie Process (2 Cases)
1. Parent process terminates before child
2. Child process terminates before parent
but parent did not call wait:

process:
" init process becomes "pseudo" parent of
child processes
" Child termination sends signal to init,
which utilizes wait() to cleanup
" Child process become a zombie process
" Can fill up process table
! May need a reboot to clear the table on
older Unix implementations

On batch processing system: FCFS, SJF, SRT 
" No user interaction 
" Non-preemptive scheduling is predominant
! Turnaround time: 
" Total time taken, i.e. finish-arrival time 
" Related to waiting time: time spent waiting
for CPU
! Throughput: 
" Number of tasks finished per unit time
! CPU utilization: 
" Percentage of time when CPU is working on
a task
Predictedn+1

= αActualn+(1-α)Predictedn

Criteria for interactive environment:
RR, Priority Based, MLFQ, Lottery
! Response time:
" Time between request and
response by system
! Predictability:
" Variation in response time,
lesser variation == more predictable
Preemptive scheduling algorithms
are used to ensure good response
time
Scheduler needs to run
periodically
must take over control of CPU

Task States: (PS fields for states: R/S/D/T/Z,
process/task are the equivalent for scheduler)
! TASK_RUNNING: running on CPU or waiting to
run only these tasks can be scheduled
! TASK_INTERRUPTIBLE /
TASK_UNINTERRUPTIBLE: sleeping for condition/
event/IO
! TASK_ZOMBIE: process terminated
! TASK_STOPPED: stopped by signal
Remember: only TASK_RUNNING tasks can be
considered for running so scheduler looks at the
TASK_RUNNING tasks

roughly: process_priority = base + f(nice)
+ g(cpu usage estimate)
f(): nice adjustment from nice value 
g(): decay factor: reduce importance of
long processes

3 scheduling classes: (Posix) - soft real-time 
" Real-Time FIFO: SCHED_FIFO 
" Real-Time Round Robin: SCHED_RR
" Normal Time Sharing: SCHED_OTHER
form of multilevel feedback queues (can be viewed
as 100 levels (0-99), level 0 is normal non RT,
level 1 to 99 is RT
non-RT tasks never run if there are runnable RT
tasks
Static Priorities: RT priorities are not changed by
scheduler
Dynamic Priority: used for SCHED_OTHER tasks,
changed by system
Static RT priority > Dynamic priority

Linux Real Time Scheduling
! Soft real time (RT)
! SCHED_FIFO policy:
scheduling occurs only when:
" higher priority RT task
" system call wait, voluntary yield
" note: timer interrupt still used so
higher priorities can preempt
! SCHED_RR policy:
similar to FIFO but preemptive scheduling
applies, round robin scheduling of RT
tasks of same priority, preemption by
higher RT priority tasks
! SCHED_OTHER: 
" normal processes/threads – like
traditional Unix 
" unix nice priorities + dynamic
feedback adjustments
" can only run if no real time processes
in ready state
! Other policies:
" SCHED_DEADLINE ,
SCHED_BATCH, SCHED_IDLE

Process Address Space Layout (conceptual view)
! code: executable machine code of program
! data: (global) data statically allocated by
compiler and linker. Some data may be initialized
from executable, eg. "error messages" in
program. May have read-only data
! heap: dynamic memory usage is under
program control, may grow/shrink dynamically at
runtime (think of malloc() / free())
! stack: stores stack frames for procedures/
function calls (dynamic with call/ret)

What does OS do for memory management:
" Allocate memory to new processes
" Manage memory of process (ideally in
transparent fashion)
" Manage memory between processes +
kernel
" Manage kernel memory for internal use
" Provide OS services to do with memory:
get more memory, free memory, protect
memory regions, etc.

C function wrapper

assembler code to setup system call no,
arguments

trap to kernel

dispatch to correct routine
check arguments for errors
do requested service
return from kernel trap to user mode
return to C wrapper - check for error return
values

! temporal locality: 
memory address which is used is likely to be used
again
! spatial locality: 
memory addresses close to a used address is
likely to be used
Locality of reference is important assumption which
makes VM workable since it means that RAM can
act as cache for VM, not all of VM needs to be used
given good locality

Enlarge memory
by using storing
some VM in swap
space on disk |
disk| ≥ |memory|
and disk access
time >> memory
access

Stack frame contains:
"Return address of the caller
"Arguments for the function
"Storage for local variables
"Other information.... (more later)

 
File System: General Criteria
! Self-Contained: 
" Information stored on a media is
enough to describe
the entire organization 
" “plug-and-play"
! Persistent: 
" Beyond the lifetime of OS and
processes 
" Does not need power (note: RAM
requires power)
! Efficient:  
" Provides good management of free
and used space 
" Small overheads for bookkeeping
information

Inodes
! actual file object
! every file has one inode (many to
one mapping because of hard links)
! contains all meta-data about file
except filename
! contains reference count, i.e. #
hard links, reference count = 0 means
file can be deleted
! meta-data in inode includes Table
of Contents (TOC) which gives
mapping of file data to disk blocks
(TOC is per file - contrast with MSDOS
which has only 1 global TOC (FAT))
" inode TOC: hybrid multi-level index
structure
TOC index blocks
! Direct block pointers: 
used for small files, no extra disk overhead,
efficient direct access.
VM analogy: TLB (however not a cache)
! Single indirect block:
files bigger than direct blocks & smaller than
double indirect. Disk overhead is 1 block.
File access slightly slower than direct.
VM analogy: direct mapped page table
! double + triple indirect blocks:
files bigger than single indirect block
(usually not needed) . More disk overhead
but is small fraction of file size. Random file
access requires looking up the indirection
blocks – slower than indirect.
VM analog: 2-3 level page tables

Allocated blocks:
size = requested memory size + (alignment
padding may be needed?) hidden field(s):
block size (required for malloc usage)
Free blocks:
since its free, can use entire block for any data
structures! block size (size of this free block) 
link pointers 
E.g: doubly linked list + size = ~3 words for
bookkeeping imposes minimum free block size
≥ 3 words

Fit Policies
! First Fit: first block which can fit. Can
result in front of list being split more giving
many small blocks at start
! Best Fit: find smallest fitting block.
Requires searching whole list!
" Worst case: can result in bad external
fragmentation with many tiny blocks
" Experimentally good memory use
results
! Next Fit: like first fit but search from
previously searched position. Avoids
accumulation of small blocks at start. May
have poor locality (affects caches)
File Data: Access Methods
! Sequential Access:
" Cannot skip but can be rewound
" implicitly may have offset position in file –
access from current offset
! Random Access:
" Data can be read from anywhere in file
" Can be provided in two ways: 
1. Read(Offset): Every read operation explicitly
state the position to be accessed
2. Seek(Offset): A special operation is provided
to move to a new location in file
E.g. Unix and Windows uses (2)
! Direct Access:
" Used for file contains fixed-length records  
" Allow random access to any record directly
" Very useful where there is a large amount
of records e.g. In database

File System provides:  
" An abstraction on top of the physical media
" A high level resource management scheme
" Protection between processes and users 
" Sharing between processes and users
File Metadata: name, id, type, size, protection, time,
date and owner info, Table of contents(TOC)
TOC: info for the FS to determine how to access file
Unix File Types
!regular file: normal ASCII/binary data
(including executables)
!directories: special file that map filenames
to files
!Special files: 
"devices: character & block devices
"symbolic links: a soft link 
"named pipes
!Other non-native file types: eg. DOS,
CDROMs, NFS (network file system)
!proc: special file interface to kernel internals
File Data: Structure
! Array of bytes:
" The traditional Unix view
" No interpretation of data: just raw bytes
" Each byte has an unique offset
(distance) from the file start
! Fixed length records:
" Array of records, can grow/shrink
" Can jump to any record easily: 
! Offset of the Nth record = size of Record *
(N-1)
! Variable length records  
" Flexible but harder to locate a record

General Disk Structure:
" Can be treated as a 1-D array of logical blocks
" Logical block: 
! Smallest accessible unit (Usually 512-bytes to 4KB)
" Logical block is mapped into disk sector(s)
! Layout of disk sector is hardware dependent

Data Structures on Disk
! need data structure to record which block belongs to
which part of file, eg. data at positions 2020-4100 are in
which blocks and which part of the block
! How does data in file change?
" write more data at end of file
" Unix: write data into holes! basically means can write
anywhere!
" decreases with truncation operation (unlike memory
management, no free() !)
! data structure must also be stored on disk (persistent)  
! typical data structures: versions of list / trees / arrays
Notes: very similar to data structures for dynamic memory
management and page tables

MSDOS FAT16 Cluster Size
! FAT16: fat entry block # is 16 bits (16 bit numbers in
FAT entries), sector size=512 -> 64K*512 (32M)
! Logical block size = multiple of sectors. MSDOS calls
this the cluster size
! Maximum cluster size = 32K (in some versions)  
! Maximum file system size for FAT16 = 64K*32K = 2G
! Maximum file size: slightly less than 2G  
! large cluster size means large internal fragmentation!  

Linked List V2.0
! General Idea:
" Move all the block pointers into a single table
known as File Allocation Table (FAT)  
FAT is in memory at all time
" Simple yet efficient : Used by MS-DOS
! Pros: 
" Faster Random Access
The linked list traversal now takes place in memory
! Cons:
" FAT keep tracks of all disk blocks in a partition
FAT size depends on disk size (O(disk))
Consume memory (may be OK if kernel is pageable)

MSDOS FAT
! MSDOS uses File Allocation Table (FAT)
! Linked allocation but stored completely in FAT (after
reading from disk)
! FAT kept in RAM (stored in disk but duplicated in
RAM) – gives fast access to the pointers
! FAT table contains either: block number of next
block, EOF code, FREE code, BAD block (block is
unusable, i.e. disk error) – combines bitmap for free
blocks with linked allocation for list of blocks
! FAT table is 1 entry for every block. Space
management becomes an array method

Contiguous Block Allocation
! Pros:
" Simple to keep track
" Fast access – disk blocks are consecutive
! Cons:
" External Fragmentation
" File size need to be specified in advance

! Symbolic Link: can be file or directory
" B creates a special link file, G
! G contains the path name of F
" When G is accessed: 
! Contents of G gives pathname for F 
! can be recursive if F is also symbolic link
" Unix Command: "ln –s"
! In Unix:
" Symbolic link can link to any file
! file need not exist, can be directory
! General Graph can be created 
! maximum traversal limit

Linked List
! Pros: 
" Solve fragmentation problem
! Cons: 
" Random access in a file is very slow –
pointer following at disk speed 
" Part of disk block is used for pointer

Link + Unlink
! Create new file: new directory entry
with new inode  
! Hard link: new directory entry (in
appropriate dir) with inode of the linked file:
eg. link(path1, path2)  
add new directory entry to dir2: [i1, file2];
! Deleting (deleting is just unlink since
graph is DAG): remove directory entry,
decrement inode link count, free file object
when link count = 0 (plus open fd’s
condition)

File Read/Write Model
! Read operation:
" reads chunk of data representing portion
of file to buffer in process memory – may be
reading some existing blocks from disk
! Write operation:
" updates existing chunk of data
representing portion of file using buffer in
process memory – may be rewriting some
existing blocks
" appending new data – may be creating
new disk blocks for file
" combination of update + append

 

File Descriptor Sharing
! fork 
" parent + child share file descriptors
! what is a copy and what is shared?
" fd value is a copy: just an int
" internal in the kernel file object is shared
" parent fd and child fd refer to same kernel
file object
" file offset (within file object) is shared
• I/O in parent/child changes the common file

offset (kernel file object)
• so parent and child can write to the same file

without overwriting each other
! in the shell – how do multiple child
processes write to shell terminal (/dev/tty)?
" parent and child use stdout file descriptor
(fd = 1) for output
" sequential write: write data and move
shared offset for file descriptor 1
" multiple child processes may interleave
their writes due to concurrency

The Problem of Disk Fragmentation
Fast disk access: 
! contiguous blocks (from geometry/
processing view point)
! blocks in same cylinder
After some operations – block ordering
becomes more random!
Disk Fragmentation: logical contiguous blocks
are “far apart” on disk (this is different from
memory fragmentation)
Notes: internal fragmentation still exists from
block size
FAT:
! affects FAT FS
! fragmentation effect less with large cluster
size (but large internal fragmentation!)
! MSDOS solution: run defragmentation (like
compaction) on entire FS – move all used
blocks to be contiguous .. one big free space
chunk after defragmentation. May take a long
time to defrag! (Windows: Disk Defragmenter)
Unix S5FS:  
! also has disk fragmentation 
! may be worse than DOS since smaller
logical block size
Alternative: FS with fragmentation resistance
(not necessarily optimal but dont need to
defragment). Unix eg: BSD FFS, Linux Ext2/3 –
not covered

Properties of Correct CS Implementation
Mutual Exclusion:
• If process Pi is executing in critical section,
all other processes are prevented from
entering the critical section.
Progress:
• If no process is in a critical section, one of
the waiting processes should be (eventually)
granted access.
Bounded Wait:
• After process Pi requests to enter critical
section, there exists an upper bound of
number of times other processes can enter
the critical section before Pi.

! parallel execution
" parallel machine instruction execution
" multiple instructions execute at the
same time
! sequential special case: m = 1
! concurrency execution 
" do not distinguish between parallel
execution or simulated
parallelism (as in interleaved execution)
Race Condition: CS Approach
! Undesired execution is due to the
unsynchronized access to a shared
modifiable resource
! General outline of solution: 
" many possible approaches
" Designate code fragment with race
condition as Critical Section (CS)
" At any point in time, only one process
can execute in the critical section
! code in CS executes atomically – no
interference from other instructions
#Other process are prevented from
entering the same critical section
Assumptions on CS
! independence on non-CS  
" CS not affected by code outside
" can halt outside CS without affecting CS
of other processes
! CS takes finite time
" no infinite loop in CS
! no assumption on execution speed
" instructions execute at non-zero speed 
" processor independent (on speed)

Problems with Synchronization of CS
! Deadlock: 
" All processes (or tasks/threads)
blocked#no progress
! Starvation: 
" Some processes are blocked forever
! Livelock:  
" Processes keep changing state (to
avoid deadlock)
Peterson's Algorithm: Disadvantages
! uses atomic write of turn to resolve
waiting (last offer of turn waits), can be
generalized to n processes
! Busy Waiting:
" The waiting process repeatedly test the
while-loop condition
while (want[1] && (turn == 1)) ;
" wastes CPU cycles with busy waiting
" may not work on modern hardware
due to relaxed memory models  
! see special hardware instructions, e.g.
TestAndSet
! Not general: 
" General synchronization mechanism is
desirable
! Not just mutual exclusion

! Semaphore: 
" Generalized synchronization mechanism
programming construct 
" Only behaviors are specified#can have
different implementations
" Provides
! A way to block a number of processes,
blocked processes are sleeping (no busy wait)
! A way to unblock/wake up one or more
sleeping process

Informal proof of mutex scheme
#CS: number of processes in CS but not finished
CS Mutual Exclusion:
want (#CS = #wait(mutex) - #signal(mutex)) ≤ 1
initial mutex = 1
mutex = 1 + #signal(mutex) - #wait(mutex) mutex +
#CS = 1
From mutex ≥ 0  
! we get #CS � 1 (mutual exclusion with at
most 1 process in CS)
Deadlock:  
for deadlock – assume all processes stuck at
wait(mutex) 
" So mutex=0 and #CS=0 
" But mutex + #CS = 1 giving contradiction!
No deadlock
Starvation:  
! assume 2 processes 
! suppose P1 is blocked at wait(mutex) 
! P2 is in CS, exits CS with signal(mutex) 
! P1 can execute wait(mutex) so can eventually
enter CS 
! no starvation (assumed fairness or P2 cannot
grab mutex)

Semaphores: Properties
! Given: initial value
" SInitial ≥ 0  
! Then, the following invariant must be true:
Scurrent = SInitial + #signal(S) - #wait(S)
" #signal(S): number of signals() operations
executed
" #wait(S): number of wait() operations completed

for each t in task list // apply to all tasks not just ready tasks t->counter = t->counter/2 + nice priority;
so effect of adjustment on counter value is bounded (at most double)
adjusts counter value which is used for quantum and also priority in goodness()
" higher priority (relative) to jobs which are: I/O-bound, suspended, waiting (includes interactive
jobs which have those properties)
" quantum is also increased  
" takes into account nice value  
" increase is limited to 2*nice  
" I/O boost heuristic: increases priority + quantum Tickless: non periodic interrupt
" only use timer interrupt when needed 
" don’t interrupt when CPU is in sleep mode " adjust tick to next closest timer event
e.g: when current quantum must end, when some alarm must be triggered, ...
implementation may be more complex than it sounds " tickless isn't no ticks but dynamic ticks

if (policy(cur_task)==RR && quantum expired(cur_task)) {
reset current_task counter to nice priority; 
move current_task to end of queue;
}
REPEAT_SCHEDULE:
best = idle_task; c = -1000;
foreach t in runqueue {
 if (t not running on another cpu) { // true for uniprocessor
 w = goodness(t);
 if (w > c) { c=w; best=t; }
 }
}
if (c == 0) { // all ready tasks have expired quantum
RECALCULATE:
 foreach t in tasklist // apply to all tasks not just ready tasks
 t->counter = t->counter/2 + nice priority; // I/O boost
 goto START;
}

Producer Consumer: Busy Waiting

while (TRUE) {

 Produce Item;

 while (!canProduce);

 wait(mutex);

 if (count < K) {

 buffer[in] = item;

 in = (in+1)%K;

 count++;

 canConsume = TRUE;

 } else

 canProduce = FALSE;

 signal(mutex);

}

Producer Consumer: Busy Waiting

while (TRUE) {

 while (!canConsume);

 wait(mutex);

 if (count > 0) {

 item = buffer[out];

 out = (out+1)%K;

 count—;

 canProduce = TRUE;

 } else

 canConsume = FALSE;

 signal(mutex);

 Consume Item;

}

Producer Consumer: Blocking Version

while (TRUE) {

 Produce Item;

 wait(notFull);

 wait(mutex);

 buffer[in] = item;

 in = (in+1)%K;

 count++;

 signal(mutex);

 signal(notEmpty);

}

Producer Consumer: Blocking Version

while (TRUE) {

 wait(notEmpty);

 wait(mutex);

 item = buffer[out];

 out = (out+1)%K;

 count—;

 signal(mutex);

 signal(notFull);

 Consume Item;

}

Dining Philosopher

int state[N];

Semaphore mutex = 1;

Semaphore s[N];

void philosopher(int i) {

 while(TRUE) {

 Think();

 takeChpStcks(i);

 Eat();

 putChpStcks(i);

 }

}

void takeChpStcks(i) {

 wait(mutex);

 state[i] = HUNGRY;

 safeToEat(i);

 signal(mutex);

 wait(s[i]);

}

void safeToEat(i) {

 if(state[i]==HUNGRY && state[LEFT] !=
EATING && state[RIGHT) != EATING) {

 state[i] = EATING;

 signal(s[i]);

 }

}

void putChpStcks(i) {

 wait(mutex);

 state[i]=THINKING;

 safeToEat(LEFT);

 safeToEat(RIGHT);

 signal(mutex);

Dining Philosopher: Limited Eater

void philosopher(int i) {

 while (TRUE) {

 Think();

 wait(seats);

 wait(chpStk[LEFT]);

 wait(chpStk[RIGHT]);

 EAT();

 signal(chpStk[LEFT]);

 signal(chpStk[RIGHT]);

 signal(seats);

 }

}

goodness(task t) {  
if (realtime(t)) w = 1000 + realtime_priority(t);
else {
 w = t->counter;
 if (w > 0) {
 if (t->cpu == current cpu) // prefer same CPU for SMP
 w += PROC_CHANGE_PENALTY;
 if (address space(t) == current address space)  
 w += 1; // prefer if TLBs are unchanged, e.g. same task
 w += 20 – t->nice; // factor in task nice value
 }
}
return w;
}

Paging: Basic Idea
! Divide virtual address space into equal size
segments: pages, page size is power of 2 (why?) 
! Divide physical memory into same equal size
segments: frames
! page size small, eg. 4K for x86  
! Virtual address: <page id, offset>
Special kind of segmentation scheme:
! same size – no length needed
! segment size is small
! very large number of segments
! segment number embedded in logical address
-> part of address
Properties of Paging
! No external fragmentation – pages which are
contiguous in virtual address space can be
mapped to any page frames (frames need not be
contiguous)
! Internal fragmentation – basic allocation unit
now 1 page
! mapping transparent to program
" done by hardware translation
! rather than segment resizing – using paging
means just use more pages 
! overhead of page transfer to/from swap is on
the order of a few disk blocks (compared with
segmentation, e.g. disk block may be 512 bytes)
Role of OS
! setup/use translation hardware
" segment registers
" page tables 
! PTE entries 
! flags in PTE – protection, valid, dirty !
special registers (PTBR, PDBR) 
! manage TLBs
! more in VM management

Entries in segment table contain
information about each segment:
! base
! length
! permission information, eg.
permission for read, write, execute
(invalid memory operation -
segmentation fault)

! Each memory segment:
" Has a name (or ID)
! For ease of reference
" Has a starting address (base)  
" Has a limit  
! Indicate the range of the segment
! All memory reference is now
specified as: Segment name + Offset

Limits of Segmentation
! External fragmentation (does not
solve external fragmentation but
compaction is easier with segmentation)
! Segment resizing can cause
copying + relocation, fragmentation
problems
! Not completely transparent to
program, may require explicit segments
to be used
! Swapping overhead is high for large
segments
Recall: compaction is difficult in general
without VM support because of difficulty
of relocating pointers, segmentation
allows for virtual addresses

recall actual RAM access has CPU cycle
latency which is not low (many 10s to 100s
of cycles) Speedup with cache to remember
the translation of pages to frames
TLB Flush: 
What happens on context switch?
Process P1 → P2 Assuming independent
page tables, have to change page table
to P2. OS has to flush entries in TLB
cache belonging to P1 Simplest way -
just invalidate entire TLB cache
OS has to flush entries in TLB cache
belonging to P1 Simplest way - invalidate
entire TLB cache

TLB
! cache to store mappings from page
ids to frame numbers
! store the rest of the PTE entry (since
PTE not read on TLB hit), i.e. other
control bits, protection, etc
typical TLB size: 32 to few K

leaf nodes entries:
" final frame corresponding to virtual page
" valid (present) bit – page present in RAM (invalid either page needs to be swapped in or is unused page – OS needs to figure out)
" dirty (modified) bit – set when page is written, dirty pages may have to be written to swap (used in replacement algorithms)
" referenced bit – set when page is used (supports replacement algorithms)
" protection bits – what operations can be done, eg. is read/write/execute allowed, not all combinations may be supported by h/w (e.g. may not have execute bit),
may distinguish user from kernel (supervisor) mode (page may be accessed only from kernel mode)
" other bits, eg. unused bits which OS can use, page is not cacheable, PTE is not flushed

Various goals of VM:  
! want to run more processes than can fit in memory
" traditional goal
! allow process logical address space to exceed
available memory
! give each process its own independent logical
address space " more important for modern OS
! reduce space wastage from physical memory
management  
! provide protection to address space of processes  
! provide sharing of memory regions between
processes

Virtual Address Translation Succeeds
OS not invoked:
! PTE hit or no fault during page translation
! frame for page is in RAM (valid)
" page is present
! no protection violation 
! VM translation automatically done by HW
This should be the common case:
no OS overheads, handled invisibly by HW
(whenever possible), OS not invoked
Main page fault cases
Page fault occurs: run OS page fault handler
! page not present, e.g. valid bit is off  
We now focus on the page not present case  
can also be TLB miss if SW miss handler
is used  
OS handles fixing the fault to make page
valid. Note recursion can occur if dealing
with fault in page tables
! protection error – OS deals with this
OS causes some "OS software exception"
Unix: generates a SIGSEGV (segmentation
fault) or SIGBUS signal
! page is not used (valid bit also off since
no corresponding frame). Check OS memory
maps to see if it is an error. Could be an
(auto) expanding segment, eg. stack may not
be error (Unix: alloca() allocates memory like
malloc from stack)
Note: page fault is not a necessarily an OS
error, its a hardware exception and might lead
to actual error or not

Windows Blue Screen of Death
Windows kernel mode code:
! referencing invalid memory  
! memory which doesn't belong to it
! referencing paged memory (rather
than locked memory) at too high an
IRQL. Page faults are not permitted at
high interrupt request levels (IRQL)

! Local Replacement:
" Pros:
! Frames allocated to a process remain constant
#Performance is stable between multiple runs
" Cons: 
! If frame allocated is not enough
#hinder the progress of a process
! Global Replacement:
" Pros:
! Allow self-adjustment between processes 
" Process that needs more frame can get from other
" Cons: 
! Badly behave process can affect others 
! Frames allocated to a process can be different from
run to run

Page Replacement Algo
FIFO
No hardware support needed

Belady’s Anomaly -> FIFO doesn’t exploit
temporal locality

Least Recently Used Page Replacement
replace the page that has not been used in
the longest time

1. Use A Counter

• Logical ‘time’ counters, which is

incremented for every memory reference

• PTE with a “time-of-use” field

store the time counter value whenever reference
occurs, replace the page with smallest “time-of-use”

Too expensive for actual h/w implementation

Need to search through all pages

“Time-of-use” is 4ever increasing (overflow!)

2. Use A Stack Data Structure

• Maintain a stack of page numbers

• If page X is referenced: remove from the

stack, push on top of stack

• Replace the page at the bottom of stack

Not a pure stack: Entries can be removed
from any where in the stack

Hard to implement in h/w

LRU cost too high: maintain LRU property at
every memory reference

Second-Chance Page Replacement (CLOCK)
each PTE maintains a REF:

1=Accessed, 0=Not accessed

" Algorithm: 
1. The oldest FIFO page is selected 
2. If reference bit == 0 # Page is replaced
3. If reference bit == 1 # Page is given a 2nd chance
" Reference bit cleared to 0 
" Arrival time reset#page taken as newly loaded 
" Next FIFO page is selected, go to Step 2
Degenerate into FIFO algorithm 
! When all pages has reference bit == 1
Full CLOCK Algorithm
On page fault: R (REF), D (Dirty) bits
1.starting at clock hand, scan at most 1 revolution to
find first frame with <R=0,D=0>. If found, this frame is
selected for replacement, advance clock hand 1 frame
" prefer clean pages
2. If step 1 fails, scan at most 1 revolution to find first
frame with <R=0,D=1> and reset R=0 for any frames
scanned with R=1
" deal with dirty pages – flush (write) to swap If step 2
fails, goto step 1
Can tailor scanning rate, eg: periodically scan X pages

! Hard to find the right number of frames:
" If global replacement is used: 
! A thrashing process "steals" page from other
process # cause other process to thrashing
(Cascading Thrashing)
" If local replacement is used:
! Thrashing can be limited to one process
! But that single process can hog the I/O and
degrades the performance of other processes

